

Abstract – Genetic Algorithms and Evolution Strategies
represent two of the three major Evolutionary Algorithms.
This paper examines the history, theory and mathematical
background, applications, and the current direction of both
Genetic Algorithms and Evolution Strategies.

I. INTRODUCTION

Evolutionary Algorithms can be divided into three main
areas of research: Genetic Algorithms (GA) (from which
both Genetic Programming (which some researchers argue
is a fourth main area) and Learning Classifier Systems are
based), Evolution Strategies (ES) and Evolutionary
Programming. Genetic Programming began as a general
model for adaptive process but has since become effective
at optimization while Evolution Strategies was designed
from the beginning for variable optimization.

In section II, the History of both Genetic Algorithms and
Evolution Strategies will be examined including areas of
research that apply both GA and ES. In section III the
theory and mathematical background of GA and ES will be
laid out. Additionally, both algorithms will be
demonstrated in two separate examples. Finally in section
IV a survey of current applications in which GA and ES
have been applied is presented.

II. HISTORY

The origins of Evolution Computing can be traced to early
work by Computer Scientists in the 1950s and 1960s with
the idea that evolutionary processes could be applied to
engineering problems of optimization. This led to three
major independent implementations of Evolutionary
Computing of which two are Evolution Strategies and
Genetic Algorithms.

Genetic Algorithms were initially developed by
Bremermann [10] in 1958 but popularized by Holland who
applied GA to formally study adaptation in nature for the
purpose of applying the mechanisms into computer science

 University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

[21]. This work lead to the development of the Schema
starting in 1968[22] which was explained in detail in his
1975 book Adaptation in Natural and Artificial Systems
[23].

The Schema Theorem represented Holland’s attempt to
place Ge netic Algorithms on firm theoretical framework.
The first advancement on the Schema theory was by
Goldberg who made the popular supposition known as the
Building Block Hypothesis that crossover is the major
source of Genetic Algorithm performance.[17] This is in
contrast to the Schema theory which is focused mainly on
the destructive behavior of the crossover and mutation
operators,

In the 1990s, criticisms of the Schema theorem have
appeared. Grefenstette argued [16] that the Schema
theorem formulates that the GA will converge schemas that
are winners of actual competition rather than on schemas
with the best-observed fitness. Fogel and Ghozeil [11]
criticized the Schema theorem for not being able to estimate
the proportion of Schema in a population when fitness
proportionate selection is used in the presence of noise or
other stochastic effects. In Holland’s defense, Poli argued
[33] that Fogel and Ghozeil’s criticisms were not based
upon Holland’s original theorem and that the original
theorem is very good at modeling Schema in the presence
of noise. Radcliffe also defended [34] the Schema
theorem by explaining that many of the criticisms were not
with Holland’s theorem itself but with its over-
interpretation.

To augment the Schema theory, more “exact” mathematical
models have also been developed to make predictions about
the population composition, the speed of population
convergence and the distribution of finesses in the
population over time which the Schema theory does not
directly address. In 1991, Vose and Liepins [47] solved a
simple genetic algorithm with an exact model that provided
a geometric picture of the GA’s behaviour and since then
various other authors have provided additional “exact”
models. Other less exact methods such as applying
Markov Chain analysis to modeling GA by Nix and Vose
[30] have been attempted; however, the formulations were
difficult to solve due to high dimensions and non-
linearities.

An Introduction to Genetic Algorithms and
Evolution Strategies

1Electrical & Computer Engineering, 2Systems Design Engineering, and 3Mechanical Engineering

1Mehrdad Dianati, 2Insop Song, and 3Mark Treiber

1,2,3200 Univ. Ave. West, University of Waterloo, Ontario, N2L 3G1, Canada

Recently, Statistical-Mechanics techniques from Physics
have been successfully applied to GA by modeling a set of
macroscopic variables that are assumed to characterize the
system. The remaining degrees of freedom are then
assumed to follow a maximum entropy distribution.
Prugel-Bennett and Shaprio initially [40] applied this
method to modeling simple GA, but it has recently been
applied to understand the differences between different
types of GA algorithms (for example Rogers and Prugel-
Bennett) have compared Generational and Steady-State GA
[37]).

Other recent advances in GA include the introduction of a
variable-length chromosome by Kotani, Ochi, Ozawa, and
Akazawa[27] in 2001. Kotani et al applied GA to
determine a linear discriminator between two data sets.
Using a fixed-length chromosome, they found that by
increasing the number terms in the discriminator (using
longer and longer chromosomes), the final fitness level of
the GA increased. After they developed the variable-
length chromosome, they found that there was an upper
bound for extending the length of the chromosome after
which there was not an increase in the average fitness of the
GA.

However, while Holland popularized the GA, Bremermann
made significant advances in the development of GA with
the idea that in the future computers would be capable of
implemented his more advanced methods. Bremermann
was the first [12] to implement real-coded Genetic
Algorithms as well as providing a mathematic model of GA
known as the one-max function.

In contrast to Genetic Algorithms, Evolution Strategies
were initially developed for the purpose of Parameter
Optimization. According to Rechenberg[35], the first
Evolution Strategies were developed in 1964 at the
Technical University of Berlin (TUB). The idea was to
imitate the principles of organic evolution in experimental
parameter optimization for applications such as pipe
bending or PID control for a nonlinear system. In his
words “the method of organic evolution represents an
optimal strategy for the adaptation of living things to their
environment… [and] … it should therefore be worthwhile
to take over the principles of biological evolution for the
optimization of technical systems”.[45]

The algorithm that was used a mutation-selection scheme
known as two membered ES, or in short form (1+1)-ES.
In this scheme, a child was generated from its parent and
then its performance was compared with its parent’s and the
most fit of the two survived for the next generation.

To calculate the optimal mutation rate of this scheme,
Rechenberg calculated the convergence rates of two model
functions and calculated the optimum standard deviations
for successful mutations. From this he postulated his 1/5
success rule [36]:

“The ratio of successful mutations to all mutations should
be 1/5. If it is greater than 1/5, increase the variance; if it
is less, decrease the mutation variance.”

Since this method was not a purely Monte Carlo method, it
was later enhanced, by adding the notion of population.
Rechenburg proposed the multimembered ES where µ>1
parents participate in the generation of 1 offspring. This
has been denoted as (µ+1)-ES. In this method, all the
parents have the same mating probabilities and as with the
two-membered ES, the least fit member of the population
including all the parents and the one offspring is eliminated
in each generation.

The (µ+1)-ES is not- a widely used strategy but it led to
further enhancements by Schwefel in 1975[43,44,45] to
enable self adaptation of parameters such as the standard
deviation of the mutations. The (µ+?)-ES states that µ
parents produce ? offspring (?>µ) that compete with the
parents to select the µ most fit parents for the next
generation. This scheme has problems with local
optimum which lead to the (µ,?)-ES where the life time of
each individual is only one generation. While Schwefel
recommends the (µ,?)-ES be preferred over the (µ+1)-ES,
recent evidence suggests that the latter performs as well or
better than the former in practical applications.

The (µ+1)-ES and (µ+1)-ES algorithms also implement
self-adaptation by subjecting the evolution parameters (the
standard deviation of the mutations) to evolve themselves.
While this will lead to short periods of recession, it avoids
stagnation periods where the same individuals dominate the
entire population.

In addition to the previous step-size adaptation scheme,
another scheme that is also state-of-the-art called de-
randomized mutation step size control. Hansen and
Ostermeier [19] developed this method where the path of a
population is observed over multiple generations and the
scheme develops a correlation between the increased fitness
of a population and the direction of mutation.

While the selection of mutation rate has been extensively
explored, their success and limitations have only been
observed through empirical methods. Since all the self-
adaptation schemes can be caught at local maxima in
certain situations, Rudolph [38] began development of a
method to model the mutation of ES using Markov Chains.
He has since proved [39] that the “1/5 Success Rule” does
not guarantee convergence on the global maximum of a
numerical optimization problem.

In the last decade, components of different evolutionary
methods have been mixed to create hybrid evolutionary
algorithms. One such hybrid between GA and ES is the
self-adaptation genetic algorithm. Back, who has
contributed to self-adaption in both GA and ES, and
expanded by Smith and Fogarty [46], added mutation rate
to the chromosomes of individuals in GA that allowed the

mutation rate to evolve at the same rate as the variables in
the chromosome.

Another area of focus in the past decade is the development
of multi-objective evolutionary algorithms. Most of the
implementations have been based upon Genetic Algorithms
but a few have been implemented using Evolution
Strategies. In these problems, it is possible for multiple
solutions to exist that are known as Pareto-optimal
solutions. The first multi-objective evolution algorithm
was introduced by Schaffer [42] in 1985 and referred to as
the Vector Evaluated Genetic Algorithm (VEGA) . In this
method, the mating pool is divided into parts in which each
part is evaluated by a single objective fitness function.
Although this algorithm has limitations, it is typically used
as a reference.

Hajela and Lin introduced [20] the Aggregation by Variable
Objective Weighting in which the total fitness of each
chromosome is calculated by summing each objective’s
fitness function scaled by a weight value that is also
subjected to evolution. Most multi-objective algorithms
are Paereto-based including the Niched Pareto Genetic
Algorithm (NPGA) , introduced by Horn and Nafpliotis [25],
where tournament selection is used to select individuals.
This algorithm is often used as a reference in publications.
Although most multi-objective schemes are based upon
GA, Knowles and Corne[26] in 1999 developed a (1,1)-ES
that is capable of multi-objective optimization. This
algorithm is quite different from the before mentioned GA
based schemes since this algorithm is confined only to local
search but it is a true Pareto optimizer.

III. THEORY

Evolutionary computing is a family of stochastic search
techniques that mimic the natural evolution proposed by
Charles Darwin in 1858. In the realm of search techniques
the following classification indicates the position of
evolutionary algorithms:

Fig 1. Search techniques

 If we consider intelligence as a kind of capability of an
entity to adapt itself to ever changing environment, we
could consider evolutionary algorithms as a subdivision of
soft computing:

Fig 2. Artificial Intelligence techniques

These algorithms are made of the several iterations of basic
Evolution Cycle:

Fig 3. Basic Evolution Cycle

Different variations of Evolutionary Computing incorporate
the same basic cycle with different presentations’ model or
specific combinations of Variation, Mutation, Selection,
and Replacement methods. The interesting point in
implementation is the balance between two opposite
operations. In one hand the Selection operation intends to
reduce diversity of population (set of possible solutions)
and on the other hand the Variation and Mutation operators
try to increase diversity of population. This fact leads to the
convergence rate and quality of solution.

As an optimization algorithm, Evolutionary Algorithms
should be analyzed to find answers to fare questions like:

• Rate of convergence
• Quality of evolved solution
• Computational requirements

So far, no general analysis framework has been proposed to
analyze the general form of evolutionary algorithms, but
some specific variations or implementations could be
focused along two lines of investigations: theoretical and
empirical. The theoretical approach attempts to discover
mathematical truths of algorithms that will hold in a
reasonably broad domain of applications. However, the
empirical approach attempts to assess the performance of an
implementation in specific domain of application. Both
methods have advantages and disadvantages, and in
practice they should be used as complementary means to
design and tune the specific instance of an algorithm.

A. Genetic Algorithm

The canonical form of GA is in the following steps:

1. Define the objective function (environment).

Present

generation

Variation,
Mutation

Selected
Parents

New
generation

 Replacement
Selection

Finonacci Newton

Direct methods Indirect methods

Calculus-based techniques

Evolutionary strategies

Centralized Distributed

Parallel

Steady-state Generational

Sequential

Genetic algorithms

Evolutionary algorithms Simulated annealing

Guided random search techniques

Dynamic programming

Enumerative techniques

Search techniques

Neural
Networks

Evolutionary
Programming

Evolution
Strategies

Genetic
Algorithms

Genetic
Programming

Evolutionary
Algorithms

Fuzzy
Systems

COMPUTATIONAL
INTELLIGENCE

or
SOFT COMPUTING

2. Present he possible solutions (phenotype) as binary
strings (genotype or chromosome). All the
optimization parameters should be placed somewhere
inside chromosome structure e.g. if the objective
function is to be optimized for three parameters yx,

and z one possible structure could be as follows:

),,(:unctionObjectiveF zyxF

434214342143421
zyx

ic 001101111110001111101010=

3. Generate a random population of specific size. The

population size affects the efficiency and
performance of GA [1], [3]. GA does poorly for very
small size of populations and very large population
size impacts performance of the algorithm. For
typical applications, the suggested range is between
10-160 chromosomes [1].
Initial population of m chromosome: mccc ,...,, 21

4. Evaluate the fitness of every solution over the

objective function. There are many methods to
evaluate fitness and assign a real number to each
chromosome, the most popular one is called
proportional selection method:

5.

∑
=

i ixphenotypeF
ixphenotypeF

ixFitness
))((

))((
)(

ic Binary

string
Decoded
integer

Fitness Fitness
ratio

1c 1100 12 36 16.5

2c 0100 4 44 20.2

3c 0001 1 14 6.4

4c 1110 14 14 6.4

5c 0111 7 56 25.7

6c 1001 9 54 24.8
Sum 218 100

Table 1. Example fitness for 215)(xxxF −= , size of
 Population is 6 and chromosome length is 4.

6. Select a pair of chromosomes for mating by a random

selection method e.g. roulette wheel (there are other
selection algorithms like tournament selection and
rank based selection). For previous example we
simulate the following roulette wheel:

Fig 4. Roulette Wheel selection

6. Apply crossover operation on the selected pair if they

have been chosen for crossover (based on probability
of crossover cp). The most applied crossover
operation is single point crossover:

 No

Yes

Based on the probability of bit mutation mp flip the
correspondent bit if selected for mutation. At this
point we finished the process of producing a pair of
offspring form two selected parents.

7. Repeat steps 5 and 6 until the production of next
generation exceeds size of previous generation.

8. Replace the parent population with new generation.
9. Go through steps 4 to 8 until the termination criteria

met.

Example: For 1,1 ≤≤− yx find the maximum of:

Selected parents:

00110011

10110000

 Crossover

Select a random crossover
point:

00110011

10110000

Exchange the selected portion:

10110011

00110000

Next step

Fig 5.

 4)4cos(3.0)3cos(2),(22 +++−−= yxyxyxF ππ

The next step is to find the chromosome structure:

]1101110011101001[4444 34444 214444 34444 21
yx

is =

Initial population of 50 random chromosomes:

Fig 6. Initial population

Fig 7. After 150 generation

Fig 8. Evolution of average fitness

B. Mathematical Analysis of GA

In this section, we will review the mathematical foundation
theory of GA. Several people tried to assess GA behavior
mathematically. The most popular work has been done by
Holland [4] based on Schema Theory. Fogel criticized
Holland’s Schema approach and tried to model GA with
Markov Chains [1]. Others [7] attempt to apply other less
known approaches. In spite of many significant researches
it is still controversial and an open research problem. In this
paper, we will briefly look at key implications and criticism
of Schema theory.

Schema: It is Greek word (plural: schemata) that means
form, and in our discussion it is a string that contain ‘0’, ‘1’
and ‘*’ characters. As a simple example, ‘0**1’ is a schema
that represents the following variations (instances):

0001, 0011, 0101, 0111

Schema is useful for analysis of GA, because we can
categorize points in different parts of the search space by
different schemas. This concept can be described by
following figure:

 F(x)

 x
 s1 s2 s3

Fig 9. Division of Search Space by Schema

In this figure the search space in different parts of the
objective function have been categorized by three schemata
s1, s2 and s3. If we generate a population of chromosomes
they will have instances of s1, s2 or s3.

Defining length and order of schema: The distance
between outermost non ‘*’ bits is called defining length.
For example, the defining length of ‘*0*1*10*’ is 5. Order
of a schema is the number of non ‘*’ bits. For example the
order of ‘*0*1*10*’ is 4.

Schema Theorem: In canonical form of GA with single
point crossover probability cp and mutation probability

of mp the expected number of instances of schema H, (HM)

with length l , defining length dl , order)(HO and the

average fitness)(ˆ tfH in next generation satisfies the
following inequality:

)()1(
1

1)(
)(ˆ
)(ˆ

)1(HO
m

d
cH

H
H p

l
lptM

tf
tftM −

−
−≥+ Average

fitness of current population:)(ˆ tf

The complete proof could be found in [2] and [3].

Holland concluded that if we just consider the destructive
effects of crossover and mutation on schema structure, the
above inequality will turn to equality, so in next generations
number of instances of schemata with higher average
fitness will increase exponentially and the number instances
of less fit schemata will decrease exponentially:

t

H
HH

tf
tfMtM

∝

)(ˆ
)(ˆ

)0()(

K-Armed Bandit Theorem: Given a number of competing
payoff sources with unknown rates of payoff, a nearly
optimal adaptive strategy is to allocate an exponentially
increasing number of trials to the one with the best
observed performance. This strategy achieves a balance
between the conflicting goals of exploiting the current
payoff estimate and improving the payoff estimate
(exploring new facts) in order to avoid premature decisions.

Putting together Holland concluded that GA with
proportional selection method would achieve optimal
processing of sampled schemata by the randomly selected
population of chromosomes. On the other hand the GA
achieves optimal Monte Carlo search.

Criticisms of schema theory: The main criticism of
Holland’s inference is about the assumption that neglects
the constructive effects of crossover and mutation. In one
hand, these assumptions do not look like reasonable
simplifications, on the other hand without those
assumptions schema theorem would not lead to any valid
implication about changes of population fitness over
evolution cycles. Besides that, this theorem does not answer
many key questions about convergence, convergence rate
and implementation guidelines like the size of population.

Schema theorem is not a very strong framework to provide
satisfactory analytical basis, and as a result, many attempts
have been done to offer a more robust mathematical
understanding of GA. One of the most valuable works
introduced by Vose and Liepins [47] is based on Markov
Chain frameworks. By considering the GA as a finite state
Markov Chain they proved the asymptotical convergence of
GA with probability one.

C. Evolution Strategies

Another variation of evolutionary algorithms suggested by
Rechenberg [5] in 1975 and initially applied for parameter
optimization. The main difference between ES and GA are
in the presentation of population and the types of evolution
operators. In ES, instead of binary strings we use real
values to present parameters of optimization. Also contrary
to GA that incorporates both crossover and mutation, ES
just use mutation. Regarding these differences, it seems that

ES are easier to implement and might be faster than GA. Of
course, no free launch theorem [1] states that there is no
globally best optimization algorithm, and each algorithm
will be efficient for specific application domains.

The basic implementation of evolution strategies was two
membered ES−+)11(, i.e. one parent generates one
offspring and the best of two is selected and the other
eliminated. In this paper, we will explain this basic form
and then introduce some later extensions.

1. Choose a single parent vector that contains m

parameters),...,,(21 mxxxX = . Each parameter is
chosen with random process and satisfies the
constraints of problem.

2. Create a new offspring by mutation. To achieve the
mutation in this method, add a random vector of size X
with normal distribution (mean zero and variance σ):

),0(' σNXX +=

From the mathematical analysis for two sample cost
functions, Rechenberg [5] suggested the following
heuristic rule for adjustingσ :

1/5 success rule: The ratio of successful mutation to all
mutations should be 1/5. If it is greater than 1/5,
increase the variance; if it is less, decrease the
mutation variance.

3. Compare the solutions for X and 'X . Choose the best

member for the next generation.
4. Repeat steps 2 and 3 until a satisfactory solution is

found or the computation time is exhausted.

Joachim Born [5] proved, for the regular optimization
problems [5] this algorithm converges to global optimum
with probability:

Theorem: For a regular optimization [5] problem with cost
function f and global optimum −∞>*f :

1
)(lim

Pr
*

=

∞→
=

t
fxf

ob
t

As we could see in ES−+)11(, we never used the concept
of population in search and it is a ‘point to point’ search,
therefore it can likely be entrapped in local maxima
(although we will showed asymptotically, it converges to
global maximum with probability 1). In order to improve
the algorithm to use the concept of population and decrease
entrapment risk, Rechenberg suggested ES−+)1(µ
algorithm. The two general form of ES−+)(λµ and

ES−),(λµ suggested to improve ES for both parallel
processing behave better with respect to local optima. The
other improvement suggested in these new versions was to

change mutation variance adaptively from population to
population. In other words, add a kind of learning to the
search algorithm. These new general algorithms could be
implemented in following steps:

1. Chooseµ parent vectors that contain m

parameters),...,,(21 mxxxX = . Each parameter is
chosen through a random process and satisfies the
constraints of problem.

2. Create λ new offspring (λµ ≺) by recombining

µ parents and mutation like step 2 in ES)11(+ .

Comment: There are five types of recombination
operators:

1. No recombination: Select one parent randomly
and let ii xx =′′ .

2. Discrete: Select two parents a andb randomly
and let biiaii xxorxx ,, =′=′ with equal probability.

3. Intermediate: Select two parents a and b

randomly and let)(
2
1

,, biaii xxx +=′ .

4. Global Discrete: Select a new pair of ia and ib

parents for every parameter ix and let

)(2,1, ii bai xorxx =′ with equal probability.

5. Global Intermediate: Select a new pair of ia and

ib parents for every parameter ix and

let)(
2
1

2,1, ii bai xxx +=′ .

Generate the offspring population with following
algorithm:
Current population: tP
Intermediate offspring:),...,,(21 mxxxX ′′′′
Mutation operator: M
Step size meta-control: σ∆
Recombination Operator: R

)(),(tPRX =′′ σ

)],[(),(σσ ′′=′′′′ XMX

),0((. σσσ ∆′=′′ NExp

),0(σ ′′+′=′′ NXX

Note that the mutation operator is applied for both
parameters and correspondent variance.

3. Select µ most fit solutions for next generation:

For ES−+)(λµ : Select the next generation from

)(λµ + population of all parents and offspring.
For ES−),(λµ : Select the next generation fromλ
population of offspring.

4. Repeat steps 2 through 3 until satisfactory solution

found or the computation time exhausted.

Example: We simulated ES−+)51(to find the maximum

of 42),(22 +−−= yxyxF .

Fig 10. First generation of offspring

Fig 11. Generation 10

Fig 12. Generation 30

In this simple example, we could see hill climbing
capability of a simple ES.

IV. APPLICATIONS

Evolutionary Computing methods – GA and ES – have
applied to solve wide range of engineering problems, such
as manufacturing scheduling, image processing, robotics,
power electronics, VLSI design, CAD design, chemistry,
signal processing and physics; in most application area, the
average annual growth of GA papers has been
approximately 40% during last twenty years [56, 54, 59, 55,
57, 53]. In chemistry and physics, GA has been used
various topics, such as protein folding, antennas, and

macromolecules [53]. In Comp uter Aided Design area,
layout design, optimizations, and shape design are main
topics [54]. In electronics and VLSI design area, layout,
VLSI design, and testing are major research topics [55]. In
manufacturing area, process planning, scheduling, and
processing control are main research topics [56]. In optics
and image processing research area, pattern recognition and
filters are major topics [53]. In power control area, motor
control, optimization, scheduling, and economic dispatch
are main research topics [57]. In robotics area, robot
control, mobile robot path planning, and motion planning
are major research topics.

A. GA Application

1) Job-Shop Scheduling problem
Madureia et al. suggested GA for the resolution of real
world scheduling problems, and proposed a coordination
mechanism [29]. Because of frequently changing dynamic
environments, providing efficient production management
and timely delivery are one of the hard to solve problems.
Scheduling is to allocate a set of machines to perform a set
of jobs within a certain time period, and the goal of
scheduling is to find a appropriate allocation – schedule –
which maximize certain performance measure. For the
implementation issues, the solutions are encoded by natural
representation, and the order crossover operator is used.
They used the inversion mechanism as mutation operator.
Finally, Madurea et al. solved dynamic scheduling problem
using a set of static scheduling by GA, and they showed the
feasibility of GA in Job-Shop scheduling problem.

2) Real-time system task managements
Sandstrom et al. applied GA for assigning task priorities
and offsets to guarantees that real time timing constraints
[41]. Assigning timing constraint to task is not trivial
problem in real-time system. They showed how timing
constraints be mapped to attributes of periodic tasks
running on standard pre-emptive RTOS (Real-Time
Operating System) such as VxWorks and QNX. They used
GA because of the GA’s ability to generate a result that
satisfies a subset of the timing constraints in cases where it
is impossible to fulfill all constraints. GA, the mechanism
of natural selection, gradually improves individuals –timing
constraints assignment - in a population. They have tested
on a many test cases, and showed good result.

3) Robot Path planning with give map by GA
Zein-Sabatto and Ramakrishnan applied GA for multiple
robot path planning [52]. They generated optimal path for
multiple robot using GA, and for multiple robot
environment, they had to consider the robot size and
location of known obstacles in the environment and
topological elevations of the environment, because the
robots are in 3D environment. In their problem setup, all the
obstacles are known; they concentrated on global planning.
The path planning for multiple robot caused more
challenges, such as minimize total traveling distance and
energy consumed by each robot. They employed GA for

this research because GA provides a robust search in
complex spaces, and is less expensive then other search
algorithms. They used elevation changes and energy
changes for their fitness function. Finally, they showed
efficiency and robustness of GA on multi-robot path
planning in 3D environment.

4) Sensor-based Robot Path Planning
Yasuda and Takai applied GA for sensor-based mobile
robot path planning under unstructured environment in real-
time [50]. After finding obstacles, the planning module
generates a short and safe path to goal with obstacle
avoidance, which is a sequence of control vectors of
orientation. With GA, a path is represented as a set of
orientation vectors with equal distance. Thus, the final path
is the composition of polygonal lines (sum of vectors). To
minimize the length, the change of orientation is restricted
to 5 values from –45 deg to 45 deg. For fitness function,
they used distance parameters between goals, obstacles.
They used the combination of roulette and elite selection,
one-point cross over. They tried to make their system
simple to operate in real-time environment.

5) Image Processing by GA
Gong and Yang applied GA for stereo image processing
[18]. Stereovision system generates disparity map; the
disparity map should be smooth and detail. They used
intensity-based approach. They increased the accuracy of
the disparity map by removing the mismatches from
occlusions and false targets. They formalized stereo
matching as optimization problem; GA optimized the
compatibility between corresponding points and continuity
of the disparity map. First, the 3D disparity is populated
with dissimilarity values based on the source images; a
fitness function is defined based on the Markov Random
Field to test a disparity map. GA extracts best population
from disparity map. Color image segmentation, graft
crossover was applied; elitist strategy is applied for
selection. Their experiment showed that GA out performed
existing methods.

B. ES Application

1) Parameter estimation by ES
In system parameter estimation, there have been many
researches using the maximum likelihood (ML), the
maximum a posterior (MAP), or the least squares (LS).
However, ES - as a stochastic search - can be applied to
system parameter estimation. Hatanaka et al. applied ES for
multiple estimates of the system parameters, and showed
numerical examples [24]. In system parameter estimation,
adaptability and robustness are important. Adaptability is
adaptiveness to the system dynamics; robustness is to
robust to outliers. Hatanaka et al. applied ES to the
parameter estimation of autoregressive (AR) model, and
they used (µ + λ)-ES selection. Finally, they showed the
out-performance of ES over recursive least square and
recursive weighted least squares methods; they emphasized
the adaptability and robustness of ES over other methods.

2) Image processing and Computer Vision system

ES can also be applied to image analysis applications.
Louchet applied ES to stereo image analysis [28].
Because of the image data, ES in image analysis suffered
from heavy computation complexity to manage population.
Thus, Louchet split the problem into several independent
and simpler primitives; he used 3-D points: one of the
simplest primitives. The main idea of Louchet is to evolve a
population of 3-D points using a fitness function. The
fitness function evaluates the similarity of the 3-D points of
each stereo image. He used deterministic selection operator:
a ranking process based on fitness values. They searched
extensively of the search space using mutation operator: a
quasi-Gaussian noise added to each chromosome with a
fixed standard deviation. He also claimed real-time
properties of ES because ES are adaptive - cope with
modifications of the fitness function during the algorithm’s
run - and speed of ES is heavily dependent on the
computational complexity of the fitness function - the easier
the fitness function the faster the speed of ES is. Each
chromosome is a data structure for representing task
assignment. They use (µ + λ) -ES.

3) Task scheduling by ES
Greenwood et al. applied ES for task scheduling in
multiprocessor systems, and he illustrated the scheduling of
a digital signal-processing algorithm on a two processor
distributed system [15]. Multiprocessor scheduling is to
assign a set of task onto a multiprocessor system to
minimize overall scheduling length, and this is one of the
NP-complete problems. ES showed shorter scheduling time
than other method.

4) Mobile manipulator path planning by ES
Watanabe et al. applied ES for omni-directional mobile
manipulator path planning [49]. For B-spline, choosing
appropriate data points and end points is most important.
Thus, Watanabe et al. suggested automatic selection of
those points using various cost function: motion
smoothness, movable range of joint, singular operation, and
falling down. This path planning method is also useful for
the path generation with time constraints.

5) Car automation using ES
Ostertag et al. applied ES for airbag release optimization;
they presented a tuning method for airbag release [31]. A
quality function and a modified ES are introduced. Airbag
release optimization is difficult problem because there are
many different crash situations and misfiring of airbag
causes dangers and high repair costs. Quality function is
defined for optimal performance; however, it includes
erroneous trigger decisions and timings. Because of the
characteristic of the quality function, it is difficult to apply
general methods: gradient descent or hill climbing. In
most of their experimental test, close to the optimal solution
were obtained.

V. CONCLUSIONS

In this survey paper, we introduced two variations of the
Evolutionary Algorithms: Genetic Algorithms (GA) and
Evolution Strategies (ES). Both of them are efficient
stochastic optimal search method to solve complex and
non-linear problems. The idea for both methods originated
from natural evolution consisting of generation, selection,
and mutation. Although the methods of GA and ES are
similar, they have different techniques for implementation;
for example, in GA we need to encode and decode our
population (solution candidate); however, in ES we can use
real vector data for our population. Finally, both methods
are applied to a variety of engineering problems from
chemistry to robotics, and we introduced some of these
applications.

VI. REFERENCES
[1] David B. Fogel, “Evolutionary Computing”, IEEE Press 2002.

[2] Darrel Whitely, A Genetic Algorithm Tutorial, Co mputer Science
Department, Colorado University.

[3] Michael Negnevitsky, “Artificial Intekkigence”, Addison Wesley 2002.

[4] Bill P. Buckles and Frederick E.Petry, “Genetic Algorithms” IEEE
Press 1992.

[5] Thimas Back, Frank Hoffmcister, Hans-Paul Schwefel, “A survey of
Evolution Strategies”,University of Dortmund, Department of Computer
Science XI

[6] Gunter Rudilph, “Convergence of Evolutionary Algorithms in General
Search Spaces”, JCD Informatik Centrum Dortmund.

[7] Adam Prugel-Bennett, Alex Rogers, “Modeling GA Dynamics”, Oct
1999.

[8] Back, T. “Self-Adaption in Genetic Algorithms”, in Proceedings of the
1st European Conference on Aritificial Life, F.J. Varela and P. Bourgine,
Eds. Cambridge, MA: MIT Press, pg 263-271, 1992.

[9] Back, T., Schwefel, H.P. “Evolutionary computation: an overview”,
Evolutionary Computation, 1996., Proceedings of IEEE Internation
Conference on, pp 20-29, 1996.

[10] Bremermann, H.J. “ The evolution of intelligence. The nervous
system as a model of its environment”, Technical report, no.1, contract no.
477(17), Dept. Mathematics, Univ. Washington, Seattle, July, 1958.

[11] Fogel, D.B., Ghozeil, A. “Schema processing under proportional
selection in the presence of random effects”. IEEE Transactions on
Evolutationary Computation, Vol 1, Iss. 4, pp 290-293, 1997.

[12] Fogel, D.B., Anderson, R.W. “Revisiting Bremermann’s genetic
algorithm. I. Simultaneous mutation of all parameters”. Evolutionary
Computation, 2000. Procedings of the 2000 Congress on, Volume: 2,
2000.

[13] D. K. Gehlhaar and D. B. Fogel, “Tuning evolutionary programming
for conformationally flexible molecular docking,” in Proc. 5th Annu. Conf.
on Evolutionary Programming. Cambridge, MA: MIT Press, 1996, pp.
419-429.

[14] Greene, W.A., “Dynamic load-balancing via a genetic
algorithm”,.Tools with Artificial Intelligence, Proceedings of the 13th
International Conference on, Page(s): 121 –128, 2001.

[15] Greenwood, G.W.; Gupta, A.; McSweeney, K., “Scheduling tasks in
multiprocessor systems using evolutionary strategies”, Evolutionary
Computation, 1994. IEEE World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on , vol.1, pp345 –349, 1994.

[16] J. J. Grefenstette. “Deception considered harmful”. In L. D.
Whitley, ed., Foundations of Genetic Algorithms 2. Morgan Kaufmann,
1993.

[17] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[18] Minglun G. and Yee-Hong Y., “Multi-resolution stereo matching
using genetic algorithm”, Stereo and Multi-Baseline Vision, 2001. (SMBV
2001). Proceedings. IEEE Workshop on , pp 21 –29, 2001.

[19] Hansen, N., Ostermeier, A. “Adapting arbitrary normal mutation
distributions in evolution strategies: the covariance matrix adaptation”.
Evolutionary Computation, 1996., Proceedings of IEEE International
Conference on, 1996, pp312-317, 1996.

[20] Hajela, P., Lin, C.Y. “Genetic search strategies in multicriterion
optimal design”, in Structural Optimization, vol 4, pp. 99-107, 1992.

[21] J. H. Holland. “Outline for a logical theory of adaptive systems”.
Journal of the Association for Computing Machinery, 3, 1962, pp. 297-
314.

[22] J. H. Holland. Hierarchical descriptions of universal spaces and
adaptive systems (Technical Report ORA Projects 01252 and 08226.
Ann Arbor: University of Michigan, Deparment of Computer and
Communication Sciences, 1968.

[23] J. H. Holland. Adaptation in natural and artificial systems. Ann
Arbor: The University of Michigan Press, 1975.

[24] Hatanaka, T.; Uosaki, K.; Tanaka, H.; Yamada, Y. “System parameter
estimation by evolutionary strategy”, SICE '96. Proceedings of the 35th
SICE Annual Conference. International Session Papers,Page(s): 1045 –
1048, 1996.

[25]Horn, J., Nafpliotis, N. Multiobjective optimiza tion using the niched
pareto genetic algorithm, IlliGAL Report 93005, Illinois Genetic
Algorithms Lab., Univ. Illiniois, Urbana-Champagn, July 1993.

[26] Knowles, J., Corne, D. “The Pareto archived evolution strategy: a new
baseline algorithm for Pareto multiobjective optimization”, Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, Vol 1,
pp98-105, 1999.

[27] Kotani, M., Ochi, M., Ozawa, S., Akazawa, K. “Evolutionary
discriminant functions using genetic algorithms with variable-length
chromosome”. Neural Networks, 2001. Proceedings. IJCNN ’01.
Inernational Joint Conference on, Vol 1, Pg 761-766, 2001.

[28] Louchet, J. “Stereo analysis using individual evolution strategy”
,Pattern Recognition, 2000. Proceedings. 15th International Conference
on , Volume: 1 , Page(s): 908 –911,2000.

[29] Madureira, A.; Ramos, C.; do Carmo Silva, S.,”A Coordination
Mechanism for Real World Scheduling Problems using Genetic
Algorithms”, Evolutionary Computation, 2002. CEC '02. Proceedings of
the 2002 Congress on , Volume: 1, pp 175 –180,, 2002.

[30] Nix, E.A., Vose, M.D. “Modelling genetic algorithms with Markov
Chains”, Ann. Math Artif. Intell, Vol 5, pp79-88, 1992.

[31] Ostertag, M.; Nock, E.; Kiencke, U. “Optimization of airbag release
algorithms using evolutionary strategies”, Control Applications, 1995.,
Proceedings of the 4th IEEE Conference on , pp275 –280, 1995.

[32] E. Pettit and K.M. Swigger, “An analysis of genetic-based pattern
tracking” in Pric. National Conf. on AI, AAAO ’83, pp. 327-332, 1983.

[33] Poli, R. “Why the schema theorem is correct also in the presence of
stochastic effects”. Evolutionary Computation, 2000. Proceedings of the
2000 Congress on , Volume: 1 , 2000, Page(s): 487 -492 vol.1

[34] Radcliffe, Nicholas J. “ Schema Processing”. In: Handbook of
Evolutionary Computation (T. Baack, D.B. Fogel and Z. Michalewicz,
eds.) pp. B.2.5-1.10, Oxford University Press, 1997.

[35] I. Rechenberg. Cybernetic solution path of an experimental
problem. Royal Aircraft Establishment, Library translation NO. 1122,
Farnborough, Hants., UK, August 1965.

[36] I. Rechenberg. Evolutionsstrategie: Optimierung technischer
Systeme nach Prinzipien der biologischen Evolution . Frommann-
Holzboog, Stuttgart, 1973.

[37] Rogers, A. and Prügel-Bennett, A. Modelling the Dynamics of a
Steady State Genetic Algorithm. Foundations of Genetic Algorithms - 5
p.57-68, 1999.

[38] Rudolph, G. “Convergence of evolutionary algorithms in general
search spaces”, Evolutionary Computation, 1996., Proceedings of IEEE
International Conference on, pp 50-54, 1996.

[39] Rudolph, G.” Self-adative mutations may lead to premature
convergence”, Evolutionary Computation, IEEE Transactions on, Vol 5,
Issue 4, pp 410-414, Aug. 2001.

[40]Prugel-Bennett, A., and Shaprio, J.L. 1994. “An analysis of genetic
algorithms using statistical mechanics”. Physical Review Letters 72, no.
9: 1305-1309.

[41] Sandstrom, K.and Norstrom, C , “Managing complex temporal
requirements in real-time control systems”,. Engineering of Computer-
Based Systems, 2002. Proceedings. Ninth Annual IEEE International
Conference and Workshop, Page(s): 103 –109, 2002.

[42] Schaffer, J.D. “Multiple-Objective optimization using genetic
algorithm”. Proc. Of the First Int. Conf. on Genetic Algorithms, pp. 93-
100, 1985.

[43] H.-P. Schwefel. Evolutionsstrategie und Numerische Optimierung.
Dissertation, Technische Universitat Berlin, May 1975.

[44] H.-P. Schwefel. Numerische Optimierung von Computer-Modellen
mittels der Evolutionsstrategie, volume 26 of Interdisciplinary Systems
Research. Birkhauser, Basel, 1977.

[45] H.-P. Schwefel. Numerical Optimization of Computer Models.
Wiley, Chichester, 1981.

[46] Smith, J. and Fogarty, T.C. “Self adaptation of mutation rates in a
steady state genetic algorithm”, in Proc. 3rd IEEE Conf. on Evolutionary
Computation. Piscataway, NJ: IEEE Press, pp 318-323, 1996.

[47] Vose, M. D., and Liepins, G. E. “Punctuated equilibria in genetic
search”. Complex Systems. 5:31-44, 1991.

[48] Whitley, D., “A Genetic Algorithm Tutorial”, Computer Science
Department, Colorado State University, whiteky@cs.colostate.edu

[49] Watanabe, K.; Kiguchi, K.; Izumi, K.; Kunitake, Y., “Path planning
for an omnidirectional mobile manipulator by evolutionary computation”,
Knowledge-Based Intelligent Information Engineering Systems, 1999.
Third International Conference, Page(s): 135 –140, 1999.

[50] Yasuda, G. and Takai, H. “Sensor-based path planning and intelligent
steering control of nonholonomic mobile robots”, Industrial Electronics
Society, 2001. IECON '01. The 27th Annual Conference of the IEEE,
Volume: 1, 2001 Page(s): 317 -322 vol.1, 2001.

[51] Zitzler, E. and Thiele, L. “Multiobjective evolutionary algorithms: ac
comparartive case study and the strength Pareto approach”, Evolutionary
Computation, IEEE Transactions on, Vol. 3, Issue 4, pp 257-271, 1999.

[52] AlgorithmsZein-Sabatto, S.and Ramakrishnan, R., “Multiple Path
Planning for a Group of Mobile Robots in 3D Environment using Genetic”
SoutheastCon, 2002 . Proceedings IEEE, pp 359 –363, 2002.

[53] Jarmo T. Alander , An indexed bibliography of genetic algorithm with
Chemistry and Physics, http://citeseer.nj.nec.com

[54] Jarmo T. Alander ,An indexed bibliography of genetic algorithm with
Computer Aided Design , http://citeseer.nj.nec.com

[55] Jarmo T. Alander ,An indexed bibliography of genetic algorithm with
Electronics and VLSI Design and Testing, http://citeseer.nj.nec.com

[56] Jarmo T. Alander ,An indexed bibliography of genetic algorithm with
Manufacturing, http://citeseer.nj.nec.com

[57] Jarmo T. Alander ,An indexed bibliography of genetic algorithm with
Power Engineering, http://citeseer.nj.nec.com

[58] Jarmo T. Alander ,An indexed bibliography of genetic algorithm with
Optics and Image Processing, http://citeseer.nj.nec.com

[59] Jarmo T. Alander ,An indexed bibliography of genetic algorithm with
Robotics, http://citeseer.nj.nec.com

