
 
 
Abstract – Genetic Algorithms and Evolution Strategies 
represent two of the three major Evolutionary Algorithms.  
This paper examines the history, theory and mathematical 
background, applications, and the current direction of both 
Genetic Algorithms and Evolution Strategies. 
 

I. INTRODUCTION 

 
Evolutionary Algorithms can be divided into three main 
areas of research: Genetic Algorithms (GA) (from which 
both Genetic Programming (which some researchers argue 
is a fourth main area) and Learning Classifier Systems are 
based), Evolution Strategies (ES) and Evolutionary 
Programming.  Genetic Programming began as a general 
model for adaptive process but has since become effective 
at optimization while Evolution Strategies was designed 
from the beginning for variable optimization. 
 
In section II, the History of both Genetic Algorithms and 
Evolution Strategies will be examined including areas of 
research that apply both GA and ES.  In section III the 
theory and mathematical background of GA and ES will be 
laid out.  Additionally, both algorithms will be 
demonstrated in two separate examples.  Finally in section 
IV a survey of current applications in which GA and ES 
have been applied is presented.   
 

II. HISTORY 

 
The origins of Evolution Computing can be traced to early 
work by Computer Scientists in the 1950s and 1960s with 
the idea that evolutionary processes could be applied to 
engineering problems of optimization.  This led to three 
major independent implementations of Evolutionary 
Computing of which two are Evolution Strategies and 
Genetic Algorithms. 
 
Genetic Algorithms were initially developed by 
Bremermann [10] in 1958 but popularized by Holland who 
applied GA to formally study adaptation in nature for the 
purpose of applying the mechanisms into computer science 
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[21].   This work lead to the development of the Schema 
starting in 1968[22] which was explained in detail in his 
1975 book Adaptation in Natural and Artificial Systems 
[23].   
 
The Schema Theorem represented Holland’s attempt to 
place Ge netic Algorithms on firm theoretical framework.   
The first advancement on the Schema theory was by 
Goldberg who made the popular supposition known as the 
Building Block Hypothesis that crossover is the major 
source of Genetic Algorithm performance.[17] This is in 
contrast to the Schema theory which is focused mainly on 
the destructive behavior of the crossover and mutation 
operators, 
 
In the 1990s, criticisms of the Schema theorem have 
appeared.  Grefenstette argued [16] that the Schema 
theorem formulates that the GA will converge schemas that 
are winners of actual competition rather than on schemas 
with the best-observed fitness.  Fogel and Ghozeil [11] 
criticized the Schema theorem for not being able to estimate 
the proportion of Schema in a population when fitness 
proportionate selection is used in the presence of noise or 
other stochastic effects.  In Holland’s defense, Poli argued 
[33] that Fogel and Ghozeil’s criticisms were not based 
upon Holland’s original theorem and that the original 
theorem is very good at modeling Schema in the presence 
of noise.  Radcliffe also defended [34] the Schema 
theorem by explaining that many of the criticisms were not 
with Holland’s theorem itself but with its over-
interpretation. 
 
To augment the Schema theory, more “exact” mathematical 
models have also been developed to make predictions about 
the population composition, the speed of population 
convergence and the distribution of finesses in the 
population over time which the Schema theory does not 
directly address.  In 1991, Vose and Liepins [47] solved a 
simple genetic algorithm with an exact model that provided 
a geometric picture of the GA’s behaviour and since then 
various other authors have provided additional “exact” 
models.  Other less exact methods such as applying 
Markov Chain analysis to modeling GA by Nix and Vose 
[30] have been attempted; however, the formulations were 
difficult to solve due to high dimensions and non- 
linearities.  
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Recently, Statistical-Mechanics techniques from Physics 
have been successfully applied to GA by modeling a set of 
macroscopic variables that are assumed to characterize the 
system.  The remaining degrees of freedom are then 
assumed to follow a maximum entropy distribution.  
Prugel-Bennett and Shaprio initially [40] applied this 
method to modeling simple GA, but it has recently been 
applied to understand the differences between different 
types of GA algorithms (for example Rogers and Prugel-
Bennett) have compared Generational and Steady-State GA 
[37]). 
 
Other recent advances in GA include the introduction of a 
variable-length chromosome by Kotani, Ochi, Ozawa, and 
Akazawa[27] in 2001.  Kotani et al applied GA to 
determine a linear discriminator between two data sets.  
Using a fixed-length chromosome, they found that by 
increasing the number terms in the discriminator (using 
longer and longer chromosomes), the final fitness level of 
the GA increased.  After they developed the variable-
length chromosome, they found that there was an upper 
bound for extending the length of the chromosome after 
which there was not an increase in the average fitness of the 
GA. 
 
However, while Holland popularized the GA, Bremermann 
made significant advances in the development of GA with 
the idea that in the future computers would be capable of 
implemented his more advanced methods.  Bremermann 
was the first [12] to implement real-coded Genetic 
Algorithms as well as providing a mathematic model of GA 
known as the one-max function. 
 
In contrast to Genetic Algorithms, Evolution Strategies 
were initially developed for the purpose of Parameter 
Optimization.  According to Rechenberg[35], the first 
Evolution Strategies were developed in 1964 at the 
Technical University of Berlin (TUB).  The idea was to 
imitate the principles of organic evolution in experimental 
parameter optimization for applications such as pipe 
bending or PID control for a nonlinear system.  In his 
words “the method of organic evolution represents an 
optimal strategy for the adaptation of living things to their 
environment… [and] … it should therefore be worthwhile 
to take over the principles of biological evolution for the 
optimization of technical systems”.[45] 
 
The algorithm that was used a mutation-selection scheme 
known as two membered ES, or in short form (1+1)-ES.  
In this scheme, a child was generated from its parent and 
then its performance was compared with its parent’s and the 
most fit of the two survived for the next generation. 
 
To calculate the optimal mutation rate of this scheme, 
Rechenberg calculated the convergence rates of two model 
functions and calculated the optimum standard deviations 
for successful mutations.  From this he postulated his 1/5 
success rule [36]: 
 

“The ratio of successful mutations to all mutations should 
be 1/5.  If it is greater than 1/5, increase the variance; if it 
is less, decrease the mutation variance.” 
 
Since this method was not a purely Monte Carlo method, it 
was later enhanced, by adding the notion of population.  
Rechenburg proposed the multimembered ES where µ>1 
parents participate in the generation of 1 offspring.  This 
has been denoted as (µ+1)-ES.  In this method, all the 
parents have the same mating probabilities and as with the 
two-membered ES, the least fit member of the population 
including all the parents and the one offspring is eliminated 
in each generation. 
 
The (µ+1)-ES is not- a widely used strategy but it led to 
further enhancements by Schwefel in 1975[43,44,45] to 
enable self adaptation of parameters such as the standard 
deviation of the mutations.  The (µ+?)-ES states that µ 
parents produce ? offspring (?>µ) that compete with the 
parents to select the µ most fit parents for the next 
generation.  This scheme has problems with local 
optimum which lead to the (µ,?)-ES where the life time of 
each individual is only one generation.  While Schwefel 
recommends the (µ,?)-ES be preferred over the (µ+1)-ES, 
recent evidence suggests that the latter performs as well or 
better than the former in practical applications. 
 
The (µ+1)-ES and (µ+1)-ES algorithms also implement 
self-adaptation by subjecting the evolution parameters (the 
standard deviation of the mutations) to evolve themselves.  
While this will lead to short periods of recession, it avoids 
stagnation periods where the same individuals dominate the 
entire population.   
 
In addition to the previous step-size adaptation scheme, 
another scheme that is also state-of-the-art called de-
randomized mutation step size control.  Hansen and 
Ostermeier [19] developed this method where the path of a 
population is observed over multiple generations and the 
scheme develops a correlation between the increased fitness 
of a population and the direction of mutation. 
 
While the selection of mutation rate has been extensively 
explored, their success and limitations have only been 
observed through empirical methods.  Since all the self-
adaptation schemes can be caught at local maxima in 
certain situations, Rudolph [38] began development of a 
method to model the mutation of ES using Markov Chains.  
He has since proved [39] that the “1/5 Success Rule” does 
not guarantee convergence on the global maximum of a 
numerical optimization problem. 
 
In the last decade, components of different evolutionary 
methods have been mixed to create hybrid evolutionary 
algorithms.  One such hybrid between GA and ES is the 
self-adaptation genetic algorithm.  Back, who has 
contributed to self-adaption in both GA and ES, and 
expanded by Smith and Fogarty [46], added mutation rate 
to the chromosomes of individuals in GA that allowed the 



mutation rate to evolve at the same rate as the variables in 
the chromosome.   
 
Another area of focus in the past decade is the development 
of multi-objective evolutionary algorithms.  Most of the 
implementations have been based upon Genetic Algorithms 
but a few have been implemented using Evolution 
Strategies.  In these problems, it is possible for multiple 
solutions to exist that are known as Pareto-optimal 
solutions.  The first multi-objective evolution algorithm 
was introduced by Schaffer [42] in 1985 and referred to as 
the Vector Evaluated Genetic Algorithm (VEGA) .  In this 
method, the mating pool is divided into parts in which each 
part is evaluated by a single objective fitness function.  
Although this algorithm has limitations, it is typically used 
as a reference. 
 
Hajela and Lin introduced [20] the Aggregation by Variable 
Objective Weighting in which the total fitness of each 
chromosome is calculated by summing each objective’s 
fitness function scaled by a weight value that is also 
subjected to evolution.  Most multi-objective algorithms 
are Paereto-based including the Niched Pareto Genetic 
Algorithm (NPGA) , introduced by Horn and Nafpliotis [25], 
where tournament selection is used to select individuals.  
This algorithm is often used as a reference in publications.  
Although most multi-objective schemes are based upon 
GA, Knowles and Corne[26] in 1999 developed a (1,1)-ES 
that is capable of multi-objective optimization.  This 
algorithm is quite different from the before mentioned GA 
based schemes since this algorithm is confined only to local 
search but it is a true Pareto optimizer. 

III. THEORY 

 
Evolutionary computing is a family of stochastic search 
techniques that mimic the natural evolution proposed by 
Charles Darwin in 1858. In the realm of search techniques 
the following classification indicates the position of 
evolutionary algorithms: 

 
Fig 1. Search techniques 

 
 If we consider intelligence as a kind of capability of an 
entity to adapt itself to ever changing environment, we 
could consider evolutionary algorithms as a subdivision of 
soft computing: 

 
Fig 2. Artificial Intelligence techniques  

 
 
 
These algorithms are made of the several iterations of basic 
Evolution Cycle: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Basic Evolution Cycle 
 
Different variations of Evolutionary Computing incorporate 
the same basic cycle with different presentations’ model or 
specific combinations of Variation, Mutation, Selection, 
and Replacement methods. The interesting point in 
implementation is the balance between two opposite 
operations. In one hand the Selection operation intends to 
reduce diversity of population (set of possible solutions) 
and on the other hand the Variation and Mutation operators 
try to increase diversity of population. This fact leads to the 
convergence rate and quality of solution. 
 
As an optimization algorithm, Evolutionary Algorithms 
should be analyzed to find answers to fare questions like: 
 

• Rate of convergence 
• Quality of evolved solution 
• Computational requirements 
 

So far, no general analysis framework has been proposed to 
analyze the general form of evolutionary algorithms, but 
some specific variations or implementations could be 
focused along two lines of investigations: theoretical and 
empirical. The theoretical approach attempts to discover 
mathematical truths of algorithms that will hold in a 
reasonably broad domain of applications.  However, the 
empirical approach attempts to assess the performance of an 
implementation in specific domain of application. Both 
methods have advantages and disadvantages, and in 
practice they should be used as complementary means to 
design and tune the specific instance of an algorithm. 

A. Genetic Algorithm 
 
The canonical form of GA is in the following steps: 
 

1. Define the objective function (environment). 
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2. Present he possible solutions (phenotype) as binary 
strings (genotype or chromosome). All the 
optimization parameters should be placed somewhere 
inside chromosome structure e.g. if the objective 
function is to be optimized for three parameters yx,  

and z one possible structure could be as follows: 
 

),,(:unctionObjectiveF zyxF  

434214342143421
zyx

ic 001101111110001111101010=  

 
3. Generate a random population of specific size.  The 

population size affects the efficiency and 
performance of GA [1], [3]. GA does poorly for very 
small size of populations and very large population 
size impacts performance of the algorithm. For 
typical applications, the suggested range is between 
10-160 chromosomes [1]. 
Initial population of m chromosome: mccc ,...,, 21  

 
4. Evaluate the fitness of every solution over the 

objective function. There are many methods to 
evaluate fitness and assign a real number to each 
chromosome, the most popular one is called 
proportional selection method: 

5.  

∑
=

i ixphenotypeF
ixphenotypeF

ixFitness
))((

))((
)(  

 
ic  Binary 

string 
Decoded 
integer 

Fitness Fitness 
ratio 

1c  1100 12 36 16.5 

2c  0100 4 44 20.2 

3c  0001 1 14 6.4 

4c  1110 14 14 6.4 

5c  0111 7 56 25.7 

6c  1001 9 54 24.8 
Sum   218 100 

Table 1. Example fitness for 215)( xxxF −= , size of 
 Population is 6 and chromosome length is 4. 

 
6. Select a pair of chromosomes for mating by a random 

selection method e.g. roulette wheel (there are other 
selection algorithms like tournament selection and 
rank based selection). For previous example we 
simulate the following roulette wheel: 

 

 
Fig 4. Roulette Wheel selection 

 
6. Apply crossover operation on the selected pair if they 

have been chosen for crossover (based on probability 
of crossover cp ).  The most applied crossover 
operation is single point crossover: 
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Based on the probability of bit mutation mp flip the 
correspondent bit if selected for mutation. At this 
point we finished the process of producing a pair of 
offspring form two selected parents. 

7. Repeat steps 5 and 6 until the production of next 
generation exceeds size of previous generation. 

8. Replace the parent population with new generation. 
9. Go through steps 4 to 8 until the termination criteria 

met. 
 

Example: For 1,1 ≤≤− yx  find the maximum of: 
 

Selected parents: 

00110011  

10110000  

 Crossover 

Select a random crossover 
point: 

00110011  

10110000  

Exchange the selected portion: 

10110011  

00110000
 

Next step 



 
Fig 5. 

 4)4cos(3.0)3cos(2),( 22 +++−−= yxyxyxF ππ   

 
The next step is to find the chromosome structure: 
 

]1101110011101001[ 4444 34444 214444 34444 21
yx

is =  

Initial population of 50 random chromosomes: 
 

 
Fig 6. Initial population 

 

 
Fig 7. After 150 generation 

 
 

Fig 8. Evolution of average fitness 
 

B. Mathematical Analysis of GA 

 
In this section, we will review the mathematical foundation 
theory of GA.  Several people tried to assess GA behavior 
mathematically. The most popular work has been done by 
Holland [4] based on Schema Theory. Fogel criticized 
Holland’s Schema approach and tried to model GA with 
Markov Chains [1]. Others [7] attempt to apply other less 
known approaches. In spite of many significant researches 
it is still controversial and an open research problem. In this 
paper, we will briefly look at key implications and criticism 
of Schema theory. 
 
Schema: It is Greek word (plural: schemata) that means 
form, and in our discussion it is a string that contain ‘0’, ‘1’ 
and ‘*’ characters. As a simple example, ‘0**1’ is a schema 
that represents the following variations (instances): 

 
0001, 0011, 0101, 0111 

Schema is useful for analysis of GA, because we can 
categorize points in different parts of the search space by 
different schemas. This concept can be described by 
following figure: 
 
 
 F(x) 

 
 

 
 
         x 
            s1       s2       s3 
 

Fig 9. Division of Search Space by Schema 
 
In this figure the search space in different parts of the 
objective function have been categorized by three schemata 
s1, s2 and s3. If we generate a population of chromosomes 
they will have instances of s1, s2 or s3. 
 
Defining length and order of schema: The distance 
between outermost non ‘*’ bits is called defining length. 
For example, the defining length of ‘*0*1*10*’ is 5. Order 
of a schema is the number of non ‘*’ bits. For example the 
order of ‘*0*1*10*’ is 4. 
 
Schema Theorem: In canonical form of GA with single 
point crossover probability cp and mutation probability 

of mp the expected number of instances of schema H, ( HM ) 

with length l , defining length dl , order )(HO  and the 

average fitness )(ˆ tfH  in next generation satisfies the 
following inequality: 
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The complete proof could be found in [2] and [3]. 
 
Holland concluded that if we just consider the destructive 
effects of crossover and mutation on schema structure, the 
above inequality will turn to equality, so in next generations 
number of instances of schemata with higher average 
fitness will increase exponentially and the number instances 
of less fit schemata will decrease exponentially: 
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K-Armed Bandit Theorem: Given a number of competing 
payoff sources with unknown rates of payoff, a nearly 
optimal adaptive strategy is to allocate an exponentially 
increasing number of trials to the one with the best 
observed performance. This strategy achieves a balance 
between the conflicting goals of exploiting the current 
payoff estimate and improving the payoff estimate 
(exploring new facts) in order to avoid premature decisions. 
 
Putting together Holland concluded that GA with 
proportional selection method would achieve optimal 
processing of sampled schemata by the randomly selected 
population of chromosomes. On the other hand the GA 
achieves optimal Monte Carlo search. 
 
Criticisms of schema theory: The main criticism of 
Holland’s inference is about the assumption that neglects 
the constructive effects of crossover and mutation. In one 
hand, these assumptions do not look like reasonable 
simplifications, on the other hand without those 
assumptions schema theorem would not lead to any valid 
implication about changes of population fitness over 
evolution cycles. Besides that, this theorem does not answer 
many key questions about convergence, convergence rate 
and implementation guidelines like the size of population. 
 
Schema theorem is not a very strong framework to provide 
satisfactory analytical basis, and as a result, many attempts 
have been done to offer a more robust mathematical 
understanding of GA. One of the most valuable works 
introduced by Vose and Liepins [47] is based on Markov 
Chain frameworks. By considering the GA as a finite state 
Markov Chain they proved the asymptotical convergence of 
GA with probability one. 

C. Evolution Strategies 

 
Another variation of evolutionary algorithms  suggested by 
Rechenberg [5] in 1975 and initially applied for parameter 
optimization. The main difference between ES and GA are 
in the presentation of population and the types of evolution 
operators. In ES, instead of binary strings we use real 
values to present parameters of optimization. Also contrary 
to GA that incorporates both crossover and mutation, ES 
just use mutation. Regarding these differences, it seems that 

ES are easier to implement and might be faster than GA. Of 
course, no free launch theorem [1] states that there is no 
globally best optimization algorithm, and each algorithm 
will be efficient for specific application domains. 
 
The basic implementation of evolution strategies was two 
membered ES−+ )11( , i.e. one parent generates one 
offspring and the best of two is selected and the other 
eliminated. In this paper, we will explain this basic form 
and then introduce some later extensions. 
 
1. Choose a single parent vector that contains m 

parameters ),...,,( 21 mxxxX = . Each parameter is 
chosen with random process and satisfies the 
constraints of problem. 

2. Create a new offspring by mutation. To achieve the 
mutation in this method, add a random vector of size X 
with normal distribution (mean zero and variance σ ): 

 
),0(' σNXX +=  

 
From the mathematical analysis for two sample cost 
functions, Rechenberg [5] suggested the following 
heuristic rule for adjustingσ : 
 
1/5 success rule: The ratio of successful mutation to all 
mutations should be 1/5. If it is greater than 1/5, 
increase the variance; if it is less, decrease the 
mutation variance. 

 
3. Compare the solutions for X and 'X . Choose the best 

member for the next generation. 
4. Repeat steps 2 and 3 until a satisfactory solution is 

found or the computation time is exhausted. 
 
Joachim Born [5] proved, for the regular optimization 
problems [5] this algorithm converges to global optimum 
with probability: 
 
Theorem:  For a regular optimization [5] problem with cost 
function f and global optimum −∞>*f : 
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As we could see in ES−+ )11( , we never used the concept 
of population in search and it is a ‘point to point’ search, 
therefore it can likely be entrapped in local maxima 
(although we will showed asymptotically, it converges to 
global maximum with probability 1). In order to improve 
the algorithm to use the concept of population and decrease 
entrapment risk, Rechenberg suggested ES−+ )1(µ  
algorithm. The two general form of ES−+ )( λµ and 

ES−),( λµ suggested to improve ES for both parallel 
processing behave better with respect to local optima. The 
other improvement suggested in these new versions was to 



change mutation variance adaptively from population to 
population.  In other words, add a kind of learning to the 
search algorithm. These new general algorithms could be 
implemented in following steps: 
 

1. Chooseµ parent vectors that contain m 

parameters ),...,,( 21 mxxxX = . Each parameter is 
chosen through a random process and satisfies the 
constraints of problem. 

 
2. Create λ  new offspring ( λµ ≺ ) by recombining 

µ parents and mutation like step 2 in ES)11( + .  
 
Comment: There are five types of recombination 
operators: 
 
1. No recombination:  Select one parent randomly 
and let ii xx =′′ . 

2. Discrete:  Select two parents a andb randomly 
and let biiaii xxorxx ,, =′=′ with equal probability. 

3. Intermediate:  Select two parents a  and b  

randomly and let )(
2
1

,, biaii xxx +=′ . 

4. Global Discrete: Select a new pair of ia  and ib  

parents for every parameter ix  and let 

)( 2,1, ii bai xorxx =′ with equal probability. 

5. Global Intermediate: Select a new pair of ia  and 

ib  parents for every parameter ix  and 

let )(
2
1

2,1, ii bai xxx +=′ . 

 
Generate the offspring population with following 
algorithm: 
Current population: tP  
Intermediate offspring: ),...,,( 21 mxxxX ′′′′  
Mutation operator: M  
Step size meta-control: σ∆  
Recombination Operator: R  

)(),( tPRX =′′ σ  

)],[(),( σσ ′′=′′′′ XMX  

),0((. σσσ ∆′=′′ NExp  

),0( σ ′′+′=′′ NXX  
 
Note that the mutation operator is applied for both 
parameters and correspondent variance. 
 

3. Select µ most fit solutions for next generation: 

 
For ES−+ )( λµ : Select the next generation from 

)( λµ + population of all parents and offspring. 
For ES−),( λµ : Select the next generation fromλ  
population of offspring. 

 
4. Repeat steps 2 through 3 until satisfactory solution 

found or the computation time exhausted. 
 
Example: We simulated ES−+ )51(  to find the maximum 

of 42),( 22 +−−= yxyxF . 

 
 

Fig 10. First generation of offspring 
 

 
Fig 11. Generation 10 

 

 
Fig 12. Generation 30 

 
In this simple example, we could see hill climbing 
capability of a simple ES. 

IV. APPLICATIONS 

 
Evolutionary Computing methods – GA and ES –  have 
applied to solve wide range of engineering problems, such 
as manufacturing scheduling, image processing, robotics, 
power electronics, VLSI design, CAD design, chemistry, 
signal processing and physics; in most application area, the 
average annual growth of GA papers has been 
approximately 40% during last twenty years [56, 54, 59, 55, 
57, 53]. In chemistry and physics, GA has been used 
various topics, such as protein folding, antennas, and 



macromolecules [53]. In Comp uter Aided Design area, 
layout design, optimizations, and shape design are main 
topics [54]. In electronics and VLSI design area, layout, 
VLSI design, and testing are major research topics [55]. In 
manufacturing area, process planning, scheduling, and 
processing control are main research topics [56]. In optics 
and image processing research area, pattern recognition and 
filters are major topics [53]. In power control area, motor 
control, optimization, scheduling, and economic dispatch 
are main research topics  [57]. In robotics area, robot 
control, mobile robot path planning, and motion planning 
are major research topics. 

A. GA Application 
 

1) Job-Shop Scheduling problem 
Madureia et al. suggested GA for the resolution of real 
world scheduling problems, and proposed a coordination 
mechanism [29]. Because of frequently changing dynamic 
environments, providing efficient production management 
and timely delivery are one of the hard to solve problems. 
Scheduling is to allocate a set of machines to perform a set 
of jobs within a certain time period, and the goal of 
scheduling is to find a appropriate allocation – schedule – 
which maximize certain performance measure. For the 
implementation issues, the solutions are encoded by natural 
representation, and the order crossover operator is used. 
They used the inversion mechanism as mutation operator. 
Finally, Madurea et al. solved dynamic scheduling problem 
using a set of static scheduling by GA, and they showed the 
feasibility of GA in Job-Shop scheduling problem. 
 

2) Real-time system task managements 
Sandstrom et al. applied GA for assigning task priorities 
and offsets to guarantees that real time timing constraints 
[41]. Assigning timing constraint to task is not trivial 
problem in real-time system. They showed how timing 
constraints be mapped to attributes of periodic tasks 
running on standard pre-emptive RTOS (Real-Time 
Operating System) such as VxWorks and QNX. They used 
GA because of the GA’s ability to generate a result that 
satisfies a subset of the timing constraints in cases where it 
is impossible to fulfill all constraints. GA, the mechanism 
of natural selection, gradually improves individuals –timing 
constraints assignment - in a population. They have tested 
on a many test cases, and showed good result. 
 

3) Robot Path planning with give map by GA 
Zein-Sabatto and Ramakrishnan applied GA for multiple 
robot path planning [52]. They generated optimal path for 
multiple robot using GA, and for multiple robot 
environment, they had to consider the robot size and 
location of known obstacles in the environment and 
topological elevations of the environment, because the 
robots are in 3D environment. In their problem setup, all the 
obstacles are known; they concentrated on global planning. 
The path planning for multiple robot caused more 
challenges, such as minimize total traveling distance and 
energy consumed by each robot. They employed GA for 

this research because GA provides a robust search in 
complex spaces, and is less expensive then other search 
algorithms. They used elevation changes and energy 
changes for their fitness function. Finally, they showed 
efficiency and robustness of GA on multi-robot path 
planning in 3D environment. 
 

4) Sensor-based Robot Path Planning 
Yasuda and Takai applied GA for sensor-based mobile 
robot path planning under unstructured environment in real-
time [50]. After finding obstacles, the planning module 
generates a short and safe path to goal with obstacle 
avoidance, which is a sequence of control vectors of 
orientation. With GA, a path is represented as a set of 
orientation vectors with equal distance. Thus, the final path 
is the composition of polygonal lines (sum of vectors). To 
minimize the length, the change of orientation is restricted 
to 5 values from –45 deg to 45 deg. For fitness function, 
they used distance parameters between goals, obstacles. 
They used the combination of roulette and elite selection, 
one-point cross over. They tried to make their system 
simple to operate in real-time environment. 
 

5) Image Processing by GA 
Gong and Yang applied GA for stereo image processing 
[18]. Stereovision system generates disparity map; the 
disparity map should be smooth and detail. They used 
intensity-based approach. They increased the accuracy of 
the disparity map by removing the mismatches from 
occlusions and false targets. They formalized stereo 
matching as optimization problem; GA optimized the 
compatibility between corresponding points and continuity 
of the disparity map. First, the 3D disparity is populated 
with dissimilarity values based on the source images; a 
fitness function is defined based on the Markov Random 
Field to test a disparity map. GA extracts best population 
from disparity map. Color image segmentation, graft 
crossover was applied; elitist strategy is applied for 
selection. Their experiment showed that GA out performed 
existing methods. 

B. ES Application 
 

1) Parameter estimation by ES 
In system parameter estimation, there have been many 
researches using the maximum likelihood (ML), the 
maximum a posterior (MAP), or the least squares (LS). 
However, ES - as a stochastic search - can be applied to 
system parameter estimation. Hatanaka et al. applied ES for 
multiple estimates of the system parameters, and showed 
numerical examples [24]. In system parameter estimation, 
adaptability and robustness are important. Adaptability is 
adaptiveness to the system dynamics; robustness is to 
robust to outliers. Hatanaka et al. applied ES to the 
parameter estimation of autoregressive (AR) model, and 
they used (µ + λ)-ES selection. Finally, they showed the 
out-performance of ES over recursive least square and 
recursive weighted least squares methods; they emphasized 
the adaptability and robustness of ES over other methods. 



 
2) Image processing and Computer Vision system 

ES can also be applied to image analysis applications. 
Louchet applied ES to stereo image analysis [28].  
Because of the image data, ES in image analysis suffered 
from heavy computation complexity to manage population. 
Thus, Louchet split the problem into several independent 
and simpler primitives; he used 3-D points: one of the 
simplest primitives. The main idea of Louchet is to evolve a 
population of 3-D points using a fitness function. The 
fitness function evaluates the similarity of the 3-D points of 
each stereo image. He used deterministic selection operator: 
a ranking process based on fitness values. They searched 
extensively of the search space using mutation operator: a 
quasi-Gaussian noise added to each chromosome with a 
fixed standard deviation. He also claimed real-time 
properties of ES because ES are adaptive - cope with 
modifications of the fitness function during the algorithm’s 
run - and speed of ES is heavily dependent on the 
computational complexity of the fitness function - the easier 
the fitness function the faster the speed of ES is. Each 
chromosome is a data structure for representing task 
assignment. They use (µ + λ) -ES. 
 

3) Task scheduling by ES 
Greenwood et al. applied ES for task scheduling in 
multiprocessor systems, and he illustrated the scheduling of 
a digital signal-processing algorithm on a two processor 
distributed system [15].  Multiprocessor scheduling is to 
assign a set of task onto a multiprocessor system to 
minimize overall scheduling length, and this is one of the 
NP-complete problems. ES showed shorter scheduling time 
than other method. 
 

4) Mobile manipulator path planning by ES 
Watanabe et al. applied ES for omni-directional mobile 
manipulator path planning [49].  For B-spline, choosing 
appropriate data points and end points is most important. 
Thus, Watanabe et al. suggested automatic selection of 
those points using various cost function: motion 
smoothness, movable range of joint, singular operation, and 
falling down. This path planning method is also useful for 
the path generation with time constraints. 
 

5) Car automation using ES 
Ostertag et al. applied ES for airbag release optimization; 
they presented a tuning method for airbag release [31].  A 
quality function and a modified ES are introduced. Airbag 
release optimization is difficult problem because there are 
many different crash situations and misfiring of airbag 
causes dangers and high repair costs. Quality function is 
defined for optimal performance; however, it  includes 
erroneous trigger decisions and timings. Because of the 
characteristic of the quality function, it is difficult to apply 
general methods: gradient descent or hill climbing.  In 
most of their experimental test, close to the optimal solution 
were obtained.  
 

V. CONCLUSIONS 

 
In this survey paper, we introduced two variations of the 
Evolutionary Algorithms: Genetic Algorithms (GA) and 
Evolution Strategies (ES). Both of them are efficient 
stochastic optimal search method to solve complex and 
non-linear problems. The idea for both methods originated 
from natural evolution consisting of generation, selection, 
and mutation. Although the methods of GA and ES are 
similar, they have different techniques for implementation; 
for example, in GA we need to encode and decode our 
population (solution candidate); however, in ES we can use 
real vector data for our population. Finally, both methods 
are applied to a variety of engineering problems from 
chemistry to robotics, and we introduced some of these 
applications. 
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