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Chapter 1: Introduction 
 

Practical optimization is the art and science of allocating scarce resources to the best 

possible effect.  Optimization techniques are called into play every day in questions of 

industrial planning, resource allocation, scheduling, decision-making, etc.  For example, 

how does a global petroleum refiner decide where to buy crude oil, where to ship it for 

processing, what products to convert it to, where to sell those products, and at what 

prices? A maximum-profit optimization model is used to solve this problem.  How does 

an airline know how to route its planes and schedule its crews at minimum cost while 

meeting constraints on airplane flight hours between maintenance and maximum flight 

time for crews?  A minimum-cost optimization model is used. 

 

Many of the large scale optimization techniques in general use today can trace their 

origins to methods developed during World War II to deal with the massive logistical 

issues raised by huge armies having millions of men and machines.  Any techniques that 

promised to improve the effectiveness of the war effort were desperately needed, 

especially in the face of limited numbers of people, machines, and supplies.  What is the 

optimum allocation of gasoline supplies among competing campaigns?  What is the best 

search and bombing pattern for anti-submarine patrols?   

 

The fundamentals of the first practical, large-scale optimization technique, the simplex 

method, were developed during the war.  The simplex method was perfected shortly after 

the war when the first electronic computers were becoming available.  In fact, the early 

history of computing is closely intertwined with the history of practical optimization.  In 

the early years, the vast majority of all calculation on electronic computers was devoted 

to optimization via the simplex method! 

 

The entire history of large-scale practical optimization is very short.  In fact, the inventor 

of the simplex method, George Dantzig, died only very recently in 2005.  He told an 

amusing story at the 1997 International Symposium on Mathematical Programming.  A 

graduate student of optimization, on hearing that he was present at the meeting, rushed up 

to him and pumped his hand excitedly, exclaiming “Professor Dantzig!  I’m so glad to 

meet you!  I thought you were dead!” 

 

The field itself is an exciting hotbed of innovation, and a terrific field for researchers.  

Spectacular breakthroughs are still happening, like the development of interior point 

methods for linear programming in the late 1980s.  More recently, ideas abound as 

researchers from mathematical backgrounds trade thoughts with researchers from a 

computer science tradition.  An important example is the emergence of constraint 

programming as a powerful paradigm for optimization.  One of the largest companies in 

the field of practical optimization, Ilog, is also one of the newest, and has achieved its 

position by combining the best of the mathematical techniques with the best of the 

constraint programming techniques from computer science.   
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New optimization techniques are arriving daily, often stimulated by fascinating insights 

from other fields.  Genetic algorithms, for example, use an analogy to chromosome 

encoding and natural selection to “evolve” good optimization solutions.  Optimization 

techniques play a role in training artificial neural networks used in artificial intelligence 

research for pattern recognition.  “Swarm intelligence” research looks at using 

independent software agents to collectively solve various optimization problems.  

Perhaps you have ideas of your own: maybe you can be the next George Dantzig…. 

 

Today, optimization methods are used everywhere in business, industry, government, 

engineering, and computer science because optimization problems arise just as regularly 

in these fields as they did during World War II.  An edge in maximizing profits or 

minimizing costs can often mean the difference between success and failure in business.  

In academia, the teaching of optimization takes place in several different departments and 

under different course names.  You will find optimization taught in university 

departments of engineering, computer science, business, mathematics, and economics; 

and in courses going under the names of optimization, mathematical programming, 

operations research, industrial engineering, and algorithms.  

 

Here are a few more examples of optimization problems: 

 How should the transistors and other devices be laid out in a new computer chip 

so that the layout takes up the least area? 

 What is the smallest number of warehouses, and where should they be located so 

that the maximum travel time from any retail sales outlet to the closest warehouse 

is less than 6 hours? 

 How should telephone calls be routed between two cities to permit the maximum 

number of simultaneous calls? 

 

The process of optimization is shown schematically in Figure 1.1.  You typically begin 

with a real problem, full of details and complexities, some relevant and some not.  From 

this you extract the essential elements to create a model, and choose an algorithm or 

solution technique to apply to it.  In practical problems, the computer will carry out the 

necessary calculations.   

 

There is an unavoidable loss of realism as you move down the diagram, from real world 

problem to algorithm, model, or solution technique, and finally to computer 

implementation.  An important part of successful applied optimization is skill in 

determining what is and what is not important during this process of abstraction.  For 

example, suppose that production efficiency increases slightly nonlinearly as production 

volume increases on your assembly line.  Is the nonlinearity significant, or is it accurate 

enough to use a much simpler linear approximation?  And where do you get the “profit 

per item produced” that your model requires?  In reality it is an estimate produced by the 

accounting department who consider many factors in arriving at the number, including 

the pay rates for workers mandated by the last union contract, the estimated prices of raw 

materials and energy, and the estimated sales based on forecasts provided by the 

marketing department.  The trick is to learn, through experience, how to match messy 
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real world situations with the correct optimization algorithms, and how to combine 

algorithms to create new solvers as the situation may demand. 

 

The arrows in Figure 1.1 

indicate the normal 

process of the 

optimization cycle.  

Moving from the real 

world problem to the 

algorithm, model, or 

solution technique is 

known as analysis.  It is 

here that the main work 

of abstracting away 

irrelevant details and 

focusing on the important 

elements takes place.  In 

many cases, the process 

of analysis is extremely 

valuable by itself, even 

without carrying out any 

subsequent optimization.  

Just laying bare the 

essential elements of a problem is often extremely valuable to the client, and leads to 

insights into how to approach the problem.  Many of the skills needed here are in courses 

titled systems analysis in software engineering or computer science programs.  Skills 

needed include the ability to interact with people to find information, and expertise with 

tools for expressing your understanding of the situation in a manner that is clear, 

complete and easily understood by nontechnical folks.  I highly recommend a course in 

systems analysis for anyone who will be doing practical optimization. 

 

Moving from the algorithm, model, or solution technique to the computer implementation 

is generally the province of numerical methods (and other computer science 

techniques).  This covers issues such as calculation accuracy when using digital 

computers, efficient implementations of matrix inversion techniques, and the like.  An in-

depth knowledge is not normally necessary, but some familiarity is helpful when trying to 

adjust the control parameters of the solvers that you may be using. 

 

Moving from computer implementation back to the algorithm, model, or solution 

technique is called verification.  The main idea is to make sure that the computer 

implementation is actually carrying out the algorithm as it is supposed to.  Again, this 

will not be of great concern for users of well-tested commercial optimizers. 

 

You will be greatly concerned with validation and sensitivity analysis, the process of 

moving between the algorithm, model, or solution technique and the real world problem.  

It is here that the loop is completed and you finally compare the results you are obtaining 

real world problem 

algorithm, model, solution technique 

computer implementation 

analysis validation, 
sensitivity analysis 

numerical 
methods verification 

 

Figure 1.1: The optimization process. 
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with the real situation.  Are the results appropriate?  Do they make sense?  Does the 

model need to be modified, or another solution technique chosen?  If so, then the loop 

begins again.   

 

Validation is the process of making sure that the model or solution technique is 

appropriate for the real situation.  Sensitivity analysis looks at the effect of the specific 

data on the results.  For example, consider again how the “profit per item produced” is 

estimated.  Suppose that you are not very confident that the estimate is accurate.  

Sensitivity analysis asks how sensitive the final results are to variations in data such as 

the profit per item produced.  It may show, for example, that the final solution changes 

very little even with a large variation in profit per item produced.  In this case you heave 

a sigh of relief.  On the other hand if it turns out that the results change dramatically 

when the estimated profit per item produced changes very slightly, then you have cause 

for worry, especially if there are millions of dollars depending on the outcome of your 

analysis!  In this case you will need to run a number of scenarios showing how things 

will turn out at various values of profit per item produced in order to arrive at a final 

recommendation. 

 

This book concentrates on the top two boxes in Figure 1.1, and on the processes of 

moving between them.  You will be exposed to some of the details of the algorithms and 

their computer implementations so that you have enough understanding to deal with 

unexpected outcomes.  For success in practical optimization, you will need three things: 

 a broad knowledge of the classical generic optimization problems, 

 a knowledge of the available solution algorithms and their implementations in 

commercially available solvers, 

 practice in the process of analyzing and solving problems (as in Figure 1.1). 

 

A good approach to acquiring these essential elements is to: 

 use this book to learn about the solution algorithms, and for examples of problem 

formulations, 

 obtain practice in the optimization process through homework examples and 

examinations which consist entirely of applied problems, i.e. purely theoretical 

exercises of the mechanics of the solution algorithms are to be avoided. 

Of course, textbook word problems are vastly simpler than the complexities, 

irrelevancies, and political difficulties that arise in real situations, but they do provide 

some practice in analysis and model formulation. 

 

This book is designed as a one-term introduction to the most important topics in applied 

optimization.  It is impossible to cover all of optimization in a one-term course: there are 

entire yearlong courses on each of the individual topics that we will cover!  This book 

provides a fairly broad survey at a medium depth.  There are numerous topics that you 

should be aware of, but which cannot be covered in an introductory book like this one; 

brief sketches of these topics appear throughout the book. 

 

The main goals of a course using this book should be to equip students to: 
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1. recognize problems that can be tackled  using the tools of applied optimization, 

2. formulate optimization problems correctly and appropriately, 

3. solve optimization problems, primarily by selecting and applying the correct 

solvers, but also possibly by writing special software or hiring experts. 

These abilities will be an excellent addition to your skills toolkit, and especially useful as 

the world becomes more complex and computer-centric.  Note that a course in 

optimization or operations research is required in most MBA courses, in business, 

industrial engineering (and many other engineering programs), and economics.  Such 

courses are usually a recommended option in computer science as well.  These courses 

are included in all those programs precisely because the material finds so many practical 

applications. 

 

A brief overview of the main topics covered in the book follows. 

 

Linear programming is the most widely used of the major techniques for constrained 

optimization.  “Programming” in this sense does not imply computer programming – it is 

an old word for “planning”.   In linear programming, all of the underlying models of the 

real-world processes are linear, hence you can think of “linear programming” as 

“planning using linear models”. 

 

While linear models (e.g. each refrigerator produced consumes exactly 5 kWh of 

electricity and 60 kilograms of steel) might seem too simple to model many real world 

problems, they actually have a vast range of applications.  Many production problems are 

adequately modeled with linear relations, and many routing problems are linear, for 

 

Figure 1.2: A simple linear program. 
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example.  The largest practical constrained optimization problems that are regularly 

solved are linear programs.  Airline scheduling problems may have hundreds of 

thousands of constraints and a million variables, for example. 

 

A portion of a typical linear programming problem is shown in Figure 1.2.  Note that all 

of the relationships, the single objective function and the multiple constraints, are all 

linear relationships.  The problem is solved by determining the values of the variables 

that maximizes the profit relationship in this case. 

 

Breakthroughs in the solution of linear programs include the introduction of the simplex 

method in 1947, and Karmarkar’s interior point method in 1984.  Research on improved 

methods continues to this day. 

 

Networks are natural models of many real situations.  A network model consists of nodes 

and connecting lines called arcs, as sketched in Figure 1.3.  The nodes in Figure 1.3 

represent cities in the eastern part of Canada, and the lines between the nodes may 

variously represent roads or railways or telephone lines, depending on the application.  

 

 

Examples of some questions that might be posed, given the network model in Figure 1.3: 

 Label each of the arcs with the distance between the cities that it connects.  What 

is the shortest route between Sault Ste. Marie and Montreal?  This may be a 

simple problem to solve in Figure 1.3, but now imagine solving it on a network 

diagram of a million-transistor layout: brute force enumeration of all of the 

possible routes simply won’t work!  This is the classic shortest route problem.  If 

the arcs are labeled with travel times, then it is the fastest-route problem. 

 Let the arcs represent telephone lines, and label each arc with the maximum 

capacity of the phone line in terms of number of simultaneous calls.  Now how 

should you route calls from Windsor to Ottawa so as to maximize the number of 

simultaneous calls that can be handled?  Note that calls can go via several routes 

at once: Windsor-Toronto-Kingston-Ottawa and Windsor-Sault Ste. Marie-

Sudbury-Ottawa and Windsor-Toronto-Sudbury-Ottawa, etc.  This is the 

maximum flow problem.  The related minimum-cut problem can be used to answer 

 

Figure 1.3: A simple network diagram. 
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questions about where larger-capacity telephone lines should be constructed so 

that more calls can flow simultaneously between two cities. 

 Label the arcs with the cost of constructing a high-speed fiber-optic computer line 

between cities that it connects.  Which of the fiber-optic lines should be 

constructed so that all of the cities can be connected together at minimum total 

cost?  This is the minimum spanning tree problem. 

There is a huge array of other problems that can be tackled by network formulations and 

solution methods. 

 

We will also take a brief look at the PERT methodology.  This is a network-based 

technique for managing complex projects consisting of many activities, some of which 

have precedence relationships, and some of which can run in parallel.  Typical questions 

include: What is the shortest time in which the project can be completed?  How do 

limited resources affect the completion time?  PERT techniques have many applications 

beyond project management, for example in computer chip design where there are 

questions of signal propagation time through a network of transistors. 

 

In linear programming, all of the variables are real-valued, that is they can take on 

fractional values such as 3.7 or 19.331.  In integer programming the variables are 

restricted to taking on integer values, or perhaps only binary (0 or 1) values.  Many 

problems are integer, for example: 

 Given the members of a swim team and knowledge of their typical times for 

various strokes, how do you assign the members of the team to the legs of a multi-

stroke relay to achieve the fastest total time?  This is a binary problem: you can 

either assign someone to a leg of the relay or not assign them; you can’t assign 

half of each of two people! 

 How do you schedule professors, rooms, courses and students so that there are no 

conflicts (or a minimum number of conflicts)?  This is again a binary problem: 

you can’t assign a professor to be in two places at once. 

 How do you determine the number of rail cars to assign to various cargoes?  This 

is an integer problem: each rail car either goes or stays. 

 

In practical problems it is generally impossible to enumerate every possible solution and 

just take the best of the lot.  Integer programming problems experience “combinatorial 

explosion” in which the number of solutions grows extremely rapidly as the number of 

elements in the problem increases because of the many, many possible ways of 

combining the elements.  For example it is very easy to construct relatively small integer 

programming problems for which the number of possible different solutions is greater 

than the number of atoms in the known universe.  That is way too many to enumerate.  

Adding to the difficulty, it is rarely possible to apply real-valued techniques such as 

linear programming and then simply round the results to the nearest integer. 

 

We will look at the branch and bound technique for structuring the solution to slow down 

the combinatorial explosion, and at genetic algorithms for cases in which the 

combinatorial explosion defeats even branch and bound. 
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Dynamic programming is used when making a sequence of interrelated decisions.  It is 

used in equipment replacement problems for example, where you need to keep a 

functioning heart monitor in place over a number of years, and which to plan the 

sequence of repairs and replacements that minimize the total cost of the horizon under 

consideration. 

 

Nonlinear programming is identical to linear programming, except that the 

relationships can have a nonlinear form.  This makes the problem much harder than linear 

programming, for reasons that we will explore in detail later.  However nonlinearity is 

inescapable in many real-world problems.  Nonlinear relationships may, for example, be 

required to accurately model the losses in radio signal strength with distance as you 

optimize a microwave communication system.  We will explore some of the simpler 

techniques of nonlinear programming, those that are most often implemented in 

commercial solvers.  Fortunately, while there is a huge and rapidly growing research 

literature on the mathematics of nonlinear programming, only a relatively small number 

of techniques are actually available in commercial solvers. 

 

These are the main topics covered in this introductory textbook, but there is a wealth of 

other techniques available.  I hope I’ve whetted your appetite.  


